Struct hyper::header::ContentLength
[−]
[src]
pub struct ContentLength(pub u64);
Content-Length header, defined in
RFC7230
When a message does not have a Transfer-Encoding header field, a
Content-Length header field can provide the anticipated size, as a
decimal number of octets, for a potential payload body. For messages
that do include a payload body, the Content-Length field-value
provides the framing information necessary for determining where the
body (and message) ends. For messages that do not include a payload
body, the Content-Length indicates the size of the selected
representation.
ABNF
Content-Length = 1*DIGIT
Example values
3495
Methods from Deref<Target=u64>
fn min_value() -> u64
Returns the smallest value that can be represented by this integer type.
fn max_value() -> u64
Returns the largest value that can be represented by this integer type.
fn from_str_radix(src: &str, radix: u32) -> Result<u64, ParseIntError>
Converts a string slice in a given base to an integer.
Leading and trailing whitespace represent an error.
Arguments
- src - A string slice
- radix - The base to use. Must lie in the range [2 .. 36]
Return value
Err(ParseIntError) if the string did not represent a valid number.
Otherwise, Ok(n) where n is the integer represented by src.
fn count_ones(self) -> u32
Returns the number of ones in the binary representation of self.
Examples
let n = 0b01001100u8; assert_eq!(n.count_ones(), 3);
fn count_zeros(self) -> u32
Returns the number of zeros in the binary representation of self.
Examples
let n = 0b01001100u8; assert_eq!(n.count_zeros(), 5);
fn leading_zeros(self) -> u32
Returns the number of leading zeros in the binary representation
of self.
Examples
let n = 0b0101000u16; assert_eq!(n.leading_zeros(), 10);
fn trailing_zeros(self) -> u32
Returns the number of trailing zeros in the binary representation
of self.
Examples
let n = 0b0101000u16; assert_eq!(n.trailing_zeros(), 3);
fn rotate_left(self, n: u32) -> u64
Shifts the bits to the left by a specified amount, n,
wrapping the truncated bits to the end of the resulting integer.
Examples
let n = 0x0123456789ABCDEFu64; let m = 0x3456789ABCDEF012u64; assert_eq!(n.rotate_left(12), m);
fn rotate_right(self, n: u32) -> u64
Shifts the bits to the right by a specified amount, n,
wrapping the truncated bits to the beginning of the resulting
integer.
Examples
let n = 0x0123456789ABCDEFu64; let m = 0xDEF0123456789ABCu64; assert_eq!(n.rotate_right(12), m);
fn swap_bytes(self) -> u64
Reverses the byte order of the integer.
Examples
let n = 0x0123456789ABCDEFu64; let m = 0xEFCDAB8967452301u64; assert_eq!(n.swap_bytes(), m);
fn from_be(x: u64) -> u64
Converts an integer from big endian to the target's endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
Examples
let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "big") { assert_eq!(u64::from_be(n), n) } else { assert_eq!(u64::from_be(n), n.swap_bytes()) }
fn from_le(x: u64) -> u64
Converts an integer from little endian to the target's endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
Examples
let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "little") { assert_eq!(u64::from_le(n), n) } else { assert_eq!(u64::from_le(n), n.swap_bytes()) }
fn to_be(self) -> u64
Converts self to big endian from the target's endianness.
On big endian this is a no-op. On little endian the bytes are swapped.
Examples
let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "big") { assert_eq!(n.to_be(), n) } else { assert_eq!(n.to_be(), n.swap_bytes()) }
fn to_le(self) -> u64
Converts self to little endian from the target's endianness.
On little endian this is a no-op. On big endian the bytes are swapped.
Examples
let n = 0x0123456789ABCDEFu64; if cfg!(target_endian = "little") { assert_eq!(n.to_le(), n) } else { assert_eq!(n.to_le(), n.swap_bytes()) }
fn checked_add(self, other: u64) -> Option<u64>
Checked integer addition. Computes self + other, returning None
if overflow occurred.
Examples
assert_eq!(5u16.checked_add(65530), Some(65535)); assert_eq!(6u16.checked_add(65530), None);
fn checked_sub(self, other: u64) -> Option<u64>
Checked integer subtraction. Computes self - other, returning
None if underflow occurred.
Examples
assert_eq!((-127i8).checked_sub(1), Some(-128)); assert_eq!((-128i8).checked_sub(1), None);
fn checked_mul(self, other: u64) -> Option<u64>
Checked integer multiplication. Computes self * other, returning
None if underflow or overflow occurred.
Examples
assert_eq!(5u8.checked_mul(51), Some(255)); assert_eq!(5u8.checked_mul(52), None);
fn checked_div(self, v: u64) -> Option<u64>
Checked integer division. Computes self / other, returning None
if other == 0 or the operation results in underflow or overflow.
Examples
assert_eq!((-127i8).checked_div(-1), Some(127)); assert_eq!((-128i8).checked_div(-1), None); assert_eq!((1i8).checked_div(0), None);
fn saturating_add(self, other: u64) -> u64
Saturating integer addition. Computes self + other, saturating at
the numeric bounds instead of overflowing.
fn saturating_sub(self, other: u64) -> u64
Saturating integer subtraction. Computes self - other, saturating
at the numeric bounds instead of overflowing.
fn wrapping_add(self, rhs: u64) -> u64
Wrapping (modular) addition. Computes self + other,
wrapping around at the boundary of the type.
fn wrapping_sub(self, rhs: u64) -> u64
Wrapping (modular) subtraction. Computes self - other,
wrapping around at the boundary of the type.
fn wrapping_mul(self, rhs: u64) -> u64
Wrapping (modular) multiplication. Computes self * other, wrapping around at the boundary of the type.
fn wrapping_div(self, rhs: u64) -> u64
Wrapping (modular) division. Computes floor(self / other),
wrapping around at the boundary of the type.
The only case where such wrapping can occur is when one
divides MIN / -1 on a signed type (where MIN is the
negative minimal value for the type); this is equivalent
to -MIN, a positive value that is too large to represent
in the type. In such a case, this function returns MIN
itself..
fn wrapping_rem(self, rhs: u64) -> u64
Wrapping (modular) remainder. Computes self % other,
wrapping around at the boundary of the type.
Such wrap-around never actually occurs mathematically;
implementation artifacts make x % y illegal for MIN / -1 on a signed type illegal (where MIN is the negative
minimal value). In such a case, this function returns 0.
fn wrapping_neg(self) -> u64
Wrapping (modular) negation. Computes -self,
wrapping around at the boundary of the type.
The only case where such wrapping can occur is when one
negates MIN on a signed type (where MIN is the
negative minimal value for the type); this is a positive
value that is too large to represent in the type. In such
a case, this function returns MIN itself.
fn wrapping_shl(self, rhs: u32) -> u64
Panic-free bitwise shift-left; yields self << mask(rhs),
where mask removes any high-order bits of rhs that
would cause the shift to exceed the bitwidth of the type.
fn wrapping_shr(self, rhs: u32) -> u64
Panic-free bitwise shift-left; yields self >> mask(rhs),
where mask removes any high-order bits of rhs that
would cause the shift to exceed the bitwidth of the type.
fn pow(self, exp: u32) -> u64
Raises self to the power of exp, using exponentiation by squaring.
Examples
assert_eq!(2i32.pow(4), 16);
fn is_power_of_two(self) -> bool
Returns true iff self == 2^k for some k.
fn next_power_of_two(self) -> u64
Returns the smallest power of two greater than or equal to self.
Unspecified behavior on overflow.
fn checked_next_power_of_two(self) -> Option<u64>
Returns the smallest power of two greater than or equal to n. If
the next power of two is greater than the type's maximum value,
None is returned, otherwise the power of two is wrapped in Some.